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PREFACE

Two years have quickly elapsed and the seminar on the Recent Trends in Charged
Particle Optics and Surface Physics Instrumentation is again here, already the sixth one. The
history of the meeting was described in the preface to the previous seminar's proceedings. Let
us now summarise briefly the main points. The germ was the traditional summer seminar held
nearly regularly in the Institute of Scientific Instruments in Brno on the occasion of visits of
Professor Tom Mulvey from University of Aston in Birmingham, UK. In the seventies and
eighties, this was valuable enough for us and offered us the opportunity to make the seminar
English spoken. In the summer of 1989 we started to extend the participation, and the 1989
seminar was numbered the first. In 1990, there were as many as 30 participants from 5
countries. The third seminar in 1992 was moved to hotel Skalsky dvur in Highlands and the
next three seminars organised there, each with around forty participants, had a similar
schedule, at least from the point of view of non-scientific aspects of organisation. The fifth
seminar was the first one to which the proceedings were published.

It seems there have been no important events since the previous seminar that are worth
adding to the seminar history. This may be simply the consequence of that the seminar has
established a fully defined regularly repeating meeting and nothing is new about it except that
its serial number increases by one and the year by two and that the registered participation is
so numerous and high-quality one as it was expected. This could be a sign of stability and
tradition and we do hope that this is the explanation.

It was claimed many times at various occasions during the seminars that their
prevailing orientation to charged particle optics was and remains desirable owing to the lack
of meetings of that kind. This argument is generally correct but this time much less than
usually: in 1998 the seminar coincided with the CPO conference held in Europe, in April in
Delft. We are really happy that this circumstance has not caused any reduction in the
participation in Recent Trends. (To be exact, the "collision" appeared already earlier, in 1990,
when the CP03 was held in Toulouse but our second seminar was then still smaller and less
ambitious.)

Our traditional and a bit unusual style of the meeting, based on a not too large circle of
personalities, knowing one another quite well, more and more seems to be something that will
become usual in the future. Large congresses, aiming at gathering hundreds or even thousands
of anonymous professional colleagues to one place to present their cofttributions to the crowd,
are mainly organised because of tradition. But in fact they are also already split into symposia
of a moderate size, attended by groups similar to ours. One surely cannot consider quite
unrealistic a vision that presentation of scientific contributions will be fully replaced by
electronic conferences. But this will never be (as we hope) the case for personal face to face
meetings and discussions.

The surface physics has apparently disappeared to a significant extent from our
program of a meeting of people connected in different ways with electron microscopy. No
wonder, the newest surface analytical methods, various scanning probe microscopies but not
only them, exhibit surface sensitivities unachievable by electron beams. A few of us,
operating the low energy electron microscopes that have those capabilities, are the only
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DETECTION OF BACKSCATTERED ELECTRONS IN ENVIRONMENTAL SEM

R. Autrata, J. Jirdk * M. Klvac, V. Romanovsky

Institute o fScientific Instruments ofASCR, Kralovopolska 147, CZ-612 64 Brno,

Czech Republic

Department o f Electrotechnology, Faculty ofElectrical Engineering and Computer Science,
Technical University Brno, Antoninsk& 1, CZ-612 64 Brno, Czech Republic

Scanning electron microscopy working with pressure in the specimen chamber that are
higher than 100 Pa enables investigation of in-situ specimens and certain dynamic effects,
which is not possible in convential SEM.

In our case for the detection of backscattered electrons (BSE) in environmental
scanning electron microscope we use a paired scintillation detector YAG {yttrium aluminium
garnet) doped with Ce3+ provided with a central hole of 300 to 500 fim in diameter. The
detector acts simultaneously as a pressure limiting aperture, which allows to achieving
different pressures in the specimen and differential chamber. The configuration ofthe detector
ensures a large collection angle for the BSE signal and allows the use of the small working
distance ofthe specimen from detector to ensure a sufficient signal even in high pressures in
the specimen chamber when an increase number of collisions of electrons with the gaseous
medium occurs. Theoretical calculations and
practical measuring showed that a considerable
portion of the BSE signal escapes through the hole
of the scintillator and is not detected by the
detector. Figure 1shows a decrease in the detection
efficiency of the detector in relation to the working
distance. This effect is appreciable above all for
very small working distances ofthe specimen from
the detector. For this reason a double paired
scintillation detector was designed and constructed.

The principle of the double paired detector | d [mm]
is evident from Figure 2. For small working
distances d of the specimen from detector 1 which
are comparable with the diameter of the hole Dj, the collection angle of the detector 1
decreases rapidly and a considerable portion of BSEs escapes through the hole into the
differential chamber. The detector 2 is positioned here and it ensures the detection of those
BSEs. The single crystals of both detection stages are symmetrically divided into the right and
the left half. The interface between them is provided with an optical reflecting layer. Then
both the halves are mechanically associated. Both detection stages thus provide two paired

signals with the possibility of further
processing signals.

The properties of the detectors 1 and 2
were investigated by measuring the signal and
noise levels in relation to the pressure in the
specimen chamber and the specimen distance
d from detector 1. The signal levels were
measured in the signal path behind the
photomultiplier and preamplifier. As the
measuring specimen a carbon cylinder with a

Obr. 2 central hole coated with an Au - layer was
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IONISATION DETECTOR FOR THE ENVIRONMENTAL SEM

R. Autrata, V. Romanovsky, J. Jirdk , M. Klva¢

Institute ofScientific Instruments ofASCR, Kralovopolska 147, CZ-612 64 Brno.

Czech Republic

Department o fElectrotechnology, Faculty ofElectrical Engineering and Computer Science,
Technical University Brno, Antoninska I, CZ-612 64 Brno. Czech Republic

One of the relatively new trends in the field of scanning electron microscopy focuses
on observing specimens placed in the specimen chamber under higher pressures. The group of
these microscopes is usually called ESEM (environmental scanning electron microscopy).
The value of the working pressure in the specimen chamber 609 Pa in 0 °C is tixed as the
limit for the groups of microscopes SEM and ESEM.

The ESEM microscopes have wide application in observing biological specimens and
various types of specimen of insulation character. The observation biological specimens does
not require any special preparation technology. No charging phenomena occur due to the
presence of a gaseous medium. Consequently, the complicated and long coating of the
specimen is no longer needed. The coating usually causes the loss of information on the
material consistence ofthe specimen surface.

Nowadays scintillation detectors are usually used for the ESEM field. However, their
principle does not enable full application of these microscopes for observing biological
specimens, i.e. specimens containing a larger amount of water and especially in the lield of
topography contrast, which is important, above all, for the already mentioned field ol
biological specimens.

The configuration of this detector described and used is already fully functional and
enables the detection of the low energy electrons, thanks to which we have approached to the
possibility of the better detection of the topography contrast which we have lacked when
observing certain specimens. In our case, a gaseous medium surrounding the specimen is used
as an amplifier. In this medium an avalanche of electrons occurs, produced byvxillision of
signal particles with a gaseous medium.

The aim of the project was a design and construction of the ionisation detector lor the
ESEM microscopes, containing besides the reached functional configuration also optimisation
of the working condition of the
detector. In Figure 1 there is a I Primary electrons
design of a combined detector,
which we used and which makes
use of the features of the
scintillation . a_nd -ionis_ation scintillation detector
detectors. With this configuration a
large collection angle is reached.

When designing the detector we ionization detector
tried to find primarily the optimal
working distance D and the
pressure in the specimen chamber
p as you can see in Figure 2.
Keeping these optimal conditions,
it is possible to reach the maximum possibilities offered by this detector.

T

specimen

tig. 1 Geometrical configuration ot specimen anddeieciw
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AMPLIFICATION OF SIGNAL ELECTRONS IN GAS ENVIRONMENT

R. Autrata.*, J. Jirdk, M. Michalek, J. Spinka

* Institute of Scientific Instruments ofASCR, Kralovopolska 147, CZ-612 64 Brno, Czech
Republic

Department ofElectrotechnology, Faculty ofElectrical Engineering and Computer Science,
Technical University Brno, Antoninsk& 1, CZ-612 64 Brno, Czech Republic

Environmental scanning electron microscopes (ESEM) enable the observation of specimens at
higher pressures than in ordinary SEM. The pressure in the specimen chamber can be beween
10 -5.103 Pa. Working at higher pressures, it is advantageous to use the ionization of gas for
detection of signal electrons. To amplify the signal, ionization detectors take advantage of
ionization that occurs in the space between the specimen and the detector.

PRIMARY BEAM Fig.l. A schematic diagram of the
parallel plate electrode system.
A - contribution of primary electrons,
B - contribution of secondary electrons
(SE), C - contribution of backscattered
electrons (BSE) to the total detected

d current.

d is the sample-to-detector distance, E
is the electric field intensity. Electrons
are  multiplied  through ionizing
collisions in the gas (indicated by x).

SPECIMEN

The detected current is proportional to the number of electrons emitted from the specimen.
We assume that the total detected current can be found by summing the following
contributions:

¢D)
where IPE, | ‘E,|“SE are the contributions of the primary electrons, the SEs, and the BSEs to

the total detected current, respectively.
Acording to [1] the total amplification is given by:

)

where I;p is the part of the primary beam current impacting the specimen without any
collisions with the gas evironment, p is the pressure, a and y are the Townsend first and
second ionization coefficients, respectively, s® and Sxe are the field-independent ionization
efficiencies of the primary electrons and the BSEs, respectively, and 5 and T] are the SE and
BSE coefficients, respectively.

The calculation of the amplification can only be done for a particular type of the electrode
system. In the following part, we consider the parallel plate electrode system as shown in
Fig. 1. For the calculation it is also necessary to know the surface emissive properties and the
ionization properties of the used gas. Usually, we consider that the environment which
surrounds the specimen is air, and that ionization takes place in this gas. However it is also
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CONDITIONS FOR SPECIMEN OBSERVATION IN ENVIRONMENTAL SEM

R. Autrata.*, J. Jirak, M. Michalek, J. Spinka

Institute ofScientific Instruments ofASCR, Kralovopolska 147, CZ-612 64 Brno, Czech
Republic
Department of Electrotechnology, Faculty ofElectrical Engineering and Computer Science,
Technical University Brno, Antoninska 1, CZ-612 64 Brno, Czech Republic

Classical scanning electron microscopes (SEM) possess extraordinary properties (resolution,
image sharpness, possibility of element analysis of specimens, etc.) but they have certain
limitations as regards vacuum that is necessary for their operation.
The examined specimens should be:
- vacuum resistant: On exposing a specimen in vacuum conditions, its properties should not
be affected.
- vacuum inert: The specimens may not emit gases or vapours or particles into vacuum.
This could endanger successful operation.
- and electrically conducting.
In practice, not all specimens meet these demands. Therefore complex methods, e.g. freezing,
fixation, etc., must be used to treat them. Specimens having the character of insulators must
be coated with metal mostly.
In the environmental SEM, where we work with pressures around 1000 Pa in the specimen
chamber, we can fill the chamber with suitable gases and vapours. From this it follows that it
is possible to examine hydrated specimens, to watch the interaction of specimens with the
gaseous or liquid atmosphere, and to observe dynamic processes, such as crystal growth,
wetting, corrosion processes, cementing process. Charging effects are eliminated, owing to the
presence of ionized particles of a gas [1],
Conditions for the creation of an optimum environment in the specimen chamber that is
necessary for a successful observation of specimens are different for different cases,
depending on the kind of processes and specimens to be examined. Sometimes, some
"preparation” of specimens for ESEM is needed.
Let us focus on the most frequent case of observation of specimens containing water that is
carried out in the presence of
water vapour. For  the
environmental SEM, the most
suitable-, range of working
pressures and temperatures
follows from the curves of
relative humidity [2].
To cool specimens, it is
advantageous to use the Peltier
cell which makes it possible to
achieve a temperature diffe-
rence as high as 40 K,
compared with the temperature
of the warm end. The setting
and control of temperature of
the cell by a change in the
Fig. 1 Relative humidity versus pressure and flowing current are advan-
temperature in the specimen chamber tageous, and when needed, the

—--» temperature (°C)
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APPLICATION OF A TWO PARAMETER BELL DISTRIBUTION IN CHARGED
PARTICLE OPTICS

J.E. Barth, M.D. Nykerk and M.J. Fransen
Delft University of Technology, Department o fApplied Physics, Lorentzweg I, 262H (\J Delft.
The Netherlands

For the sake of simplicity, the Gaussian distribution exp(-w2x2) is used whenever the actual
distribution has more or less such a form. Real distributions often have tails which fall off
more slowly than a Gaussian. A, still simple, bell shaped distribution that can model this is
1/(1 + wx2)p. Having two parameters, a width measure w and the power p, it can better lit a
variety of real distributions than the Gaussian. For large p it approaches the Gaussian.

A practical measure for the size of the image ofa point blurred by chromatic aberration is the
diameter ofthe circle containing 50% of the particles,

dc = KcCc(AU/U)a.

With AU the full width half maximum (FWHM) ofthe energy distribution the value of K(
depends on the form of the energy distribution. Kc = 0.34 for the Gaussian and K, = 0.62 for
the Lorentzian distribution (bell with p = 1). It was found [1] that if instead ofthe FWHM the
FW50 (50% of the particles within AU) is used for the measure of AU that the coefficient K,
is very nearly independent of the distribution form; Ks=0.61 +/- 0.01.

A practical definition of source reduced brightness is
B = I[/(V(ro'4)dI2).

Inis the angular current density, V the energy and d, the FW50 diameter of the source image.
Fransen has measured [2] the brightness of an ultra sharp tungsten field emitter by analyzing
Frensel fringes occurring at sample edges in the point projection microscope. The fringe
intensity profile calculated when a point, Gaussian or Lorentzian distribution is assumed for
the source, will be shown.

When making numerical Monte Carlo simulations ofthe Coulomb interaction deterioration of
beam quality in a charged particle optics column it is necessary to make assumptions as to the
properties of the source as viewed from the extractor. Inclusion of more realistic distributions
for the initial energy spread and source profile should allow better analysis ofthe effects of
adjusting the beam configuration in the column.

[1] J.E. Barth, M.D. Nykerk: Dependence of the chromatic aberration spot size on the form of
the energy distribution of the charged particles. In: Proc. of the Fifth Int. Conf. on Charged
Particle Optics, to be published in Nucl. Inst, and Methods A

[2] M.J. Fransen: Electron emitters for electron microscopes, PhD. thesis, Delft University of
Technology, to be published.
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suspension to crystallize by cooling to room temperature. It is known from previous studies that this
method of sample preparation leads to regular lozenge shaped crystals, with a nominal thickness of
10 nm. The crystals were deposited from the suspension onto an amorphous carbon coated sheet of
cleaved mica and susequently floated onto the surface of distilled water, where they were retrieved
onto copper finder grids.

The images (Figures 3,4) show the well known, lozenge shaped crystals associated with
the PE single crystal morphology. The regularity in the crystal faceting and presence of overgrowths
at their edges are similar to previous observations of these same samples by conventional high voltage
TEM and scanning tunnelling microscopy [3]. The estimated resolution of these images is on the
order of 2 nm. The images show that variations in contrast are perceptible up to three or four layers
thick, corresponding to the penetration of the low voltage electron beam through samples with an
estimated mass thickness (pt) of4 x 10'5kg/m2

References
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2. Delong A., Hladil K., Kolafik V., A Low Voltage Transmission Electron Microscope, Microscopy & Analysis,
27(Europe), January 1994.

3. R. Piner, R. Reifenberger, D. C. Martin, E. L. Thomas, and R. Apkarian, J. Poly. Sci.:C: Poly. Lett., 28, 399, (1990)

Fig.l: The Low Voltage TEM Fig-2: Schematic Device Arrangement

Fig.3: LVTEM Image of PE Single Crystals Fig.4: LVTEM Image of PE Single Crystals
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High voltage transmission electron microscopy (STEM), has been used in the past as the
prime tool for obtaining dimensional (i.e. metrology) and crystallographic information at high
spatial resolution. The technique remains to be so for fundamental research, but is considered
less favourable to use in industry and particularly in quality control because of its destructive
nature during the course of sample preparation. In addition, in the STEM, the whole sample
thickness contributes to the image formation, making the results obtained to be less reliable
even with the aid of deconvolution methods. The use of STEMs is therefore considered not to
be practical in on-line analysis of large samples.

Metrology techniques currently available primarily involve the use of low voltage electron
microscopes (LVSEM). Although there has been a great deal of instrument development in
LVSEM over the last decade, and where currently most microscope manufacturers offer SKM
operating around the 1 keV and lower, data analysis at these operating voltages is still in its
infancy stages. Other probe microscopies, such as the various forms of tunnelling microscopes
(STM, AFM etc.) are very slow and are therefore ruled out for the foreseeable future. Energy
dispersive x-ray analysis (EDX) at low incident electron energies is an area of research which
is seeing some activities. These, however, are again limited to electron energies around (he 5
keV region.

The present contribution will attempt to highlight the areas of developments in stirlace
microanalysis and high resolution electron microscopy. In particular the session is to address
the recent developments demonstrating the successful use of the cathode lens in scanning
electron microscopes (SLEEM) [3] and the measurements of low energy secondary and
backscattered electron coefficients from clean solid surfaces for use in both LVSEM and
SLEEM [4], Of importance in this respect is the correlation between the atomic number
contrast obtainable in SLEEM and LVSEM as a function of the incident electron energy.
Work in combining Auger analysis with low energy imaging as a step in the interpretation of
the SLEEM contrast will be covered [5]. Recent developments in parallel data acquisition in
AES will also be addressed [6]. »
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and astigmatic imaging with any degree of astigmatism (length of the line image). A
single quadrupole triplet generally forms cither a first order distorted stigmat ic image or
two line images. These non-rotationally symmetric first-order deviations are compen-
sated by the second quadrupole triplet. Since the number of the individual giiadrnpoles
is larger than that required for stigmatic and distortion free (first order) imaging, 1lln-
path of rays within the projector system can be varied even if the magnification is fixed.
Owing to this behaviour, it is possible to adjust the quadrupole strengths in such a wa\
that the chromatic aberration of magnification and/or the third order distortion an
eliminated or minimized, respectively.

For the recording of the energy loss spectrum, a chromatic aberration perpendicular
to the direction of the dispersion can be tolerated, as it only enlarges the extension
of the image lines. The component of the axial chromatic aberration in the direct,ion
of the dispersion must be eliminated by appropriately readjusting the strength of the
hoxapoles within the energy filter. For recording the filtered achromatic image of the
object or the diffraction plane, respectively, the quadrupoles are excited in such a wa\
that the third-order distortion is minimized. Any unduly large remaining component
of the distortion can be compensated subsequently by an additional octupole field

Despite the fact that the quadrupole projector system consists of a few more elements
than that composed of rotationally symmetric lenses, its improved performance and
variability outweigh this minor disadvantage by far. In addition, the distance between
the recording plane and the filter can be shortened due to the strong refraction powei
of the quadrupole lenses.
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In summary, Fig. 2a shows diffraction at the edges of the biprism filaments, and
Fig. 2b shows biprism interference fringes of He+-ions. In order to reduce noise the in-
tegrated intensities In of about 50 successive lines perpendicular to the fringe direction
are given in Fig. 2a,b. No additional filtering was applied in the diagrams on top. All
but one of the crucial stability requirements for ions with sub-pm wavelengths are met
by the interferometer. The only exception is for the ion source whose emission site tends
to move uncontrollably in lateral direction during the long exposure time. Lateral cohe-
rence is destroyed and, with it, the fringe visibility. Improvement of source stability and
brightness are the next important goals on the way to an ion interferometer as a research

tool.

image intensifier

Fig. 1. Schematical set-up of the ion interferometer
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Fig. 2. Dependence of the spherical
aberration coefficient on the distance from
the right electrode for lenses from Fig. 1
Parameter is the aperture diameter in ()
and the cone angle in (b) to (d)

Fig. 1. Shapes ofelectrodes. Thickness of
the second electrode in (a) is 0.1 mm and
the aperture diameter changes from 0.1 to 1
mm. Thickness of all other electrodes is
1mm and the aperture diameter is 1 mm.
The distance between electrodes is 5 mm in
(b) and 10 mm in (a), (c) and (d). Plots (a)
(d) in Figs. 2 and 3 refer to versions (a) +
(d) in this figure.

fomd

z/mm

Fig. 3. Dependence of the chromatic
aberration coefficient on the distance from
the right electrode for lenses from Fig. 1
Parameter is the aperture diameter in (a)
and the cone angle in (b) to (d)
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Fig. 1. Design of the cathode lens

Fig . 2. Image of the positive resist pattern on Al surface. PE landing energy 620cV

Fig. 3. The BSE trajectories . E = 500eV Fig. 4. The SE Trajectories. E = 5eV
Take-off angles 30, 35, 40, 60, 82, 86 degree Take-off angles 0, 40, 50, 60 degree
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Fig. 1. The annular ( left) and planar (right) detector for low voltage operation
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Fig. 2. SE trajectories in annular and planar detector with a negatively biassed grid (-100V).

Fig. 3. Topographic contrast in BSE mode. Annular detector ( left), planar detector (right).
IC surface covered with the passivating Si02 APCVD layer. EO= 2,2keV.

Fig. 4. Voltage contrast in BSE + SE mode. Annular detector.
Transistor KFY 18. Without passivation.
UBE = + 5V applied. The rest of the circuit is grounded.
Voltage contrast is visible below V.
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OUTLINE OF AN ELECTRON MONOCHROMATOR WITH SMALL BOERSCH
EFFECT

F. Kahl and H. Rose
Institute ofApplied Physics, Technical University Darmstadt,
Hochschulstr. 6, D-64289 Darmstadt, Germany.

The attainable information in electron microscopy and holography is ultimately limited by
the chromatic aberration. For round lenses this defect can only be reduced by decreasing the
energy width of the incident electron beam [1]. To push the information limit below | A at vol-
tages higher than about 200 kV, the energy width must not exceed 0.2 eV. Unfortunately, the
energy width of field-emission guns lies in the range between 0.6 eV and 0.8 eV for beam cur-
rents required in TEM. As shown by experiments, about 30 % of the electrons have an energy
deviation from the mean value smaller than 0.1 eV for an emitted beam current of a few //.A.
If the remaining 70 % of the electrons could be filtered out by a monochromator, one would
obtain a nearly monochromatic source with sufficient beam current. The acceleration volta-
ge at the location of the monochromator should not exceed 3 - 5 kV to achieve a dispersion
which is sufficiently large for filtering. Hence the monochromator must be placed immediately
behind the source. Due to the high voltage to ground (a few hundred kV) in a TEM, a purely
electrostatic design is mandatory. Such an electrostatic monochromator was first proposed by
Plies [2], Unfortunately, his design consists of a large number of elements and requires a large
extension of the height of the microscope. The electrostatic Si-shaped monochromator propo-
sed by Rose [3] is significantly shorter. However, a common disadvantage of both designs is
the formation of several stigmatic intermediate images of the source within the system. The
high current density in the surrounding of these images produces a large Boersch effect [4,51
which significantly increases the energy width of the beam.

To minimize the Boersch effect, we recently analyzed the feasibility of i2-Jhaped mo-
nochromators with astigmatic and virtual stigmatic intermediate images of the source. The
line-shaped astigmatic images produce a much lower current density than stigmatic images.
The schematic construction of this type of monochromator is sketched in figure 1. To avoid a
loss of lateral coherence and brightness, the monochromator must be free of dispersion at the
exit plane. Hence it is useful to maximize the dispersion at the symmetry plane z, and select
the energy there. The line image in the energy selection plane is perpendicular to the direction
of the dispersion. The dispersion shifts this image away from the axis by a distance which is
proportional to the energy deviation. By properly adjusting the width of the selection slit, all
electrons with too large energy deviations can be filtered out. To allow for an accurate filtering,
the second-order aberrations, especially the aberrations caused by misalignment of the source,
must be kept small in the direction of the dispersion. To preserve the diameter of the source,
the second-order aberrations at the final image plane z* must also be negligibly small. Owing
to the symmetry of the monochromator, the aperture aberrations and the distortions vanish at
this plane.

The dipole field of each deflector curves the optic axis, focuses the electron beam in the
iz-section and defocuses it in the yz-section. In order to focus the beam also in this section an
additional quadrupole field must be excited within each deflector which overcompensates the
defocusing refraction of the dipole field in the yz-section and reduces the focusing effect in
the other section. The required quadupole field can be obtained by an appropriate curvature of
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DIFFERENT WAYS OF ADDING THE ABERRATIONS

Robert Kolafik and Michal Lenc

Dept. ofTheor. Physics and Astrophys.
Kotlarska 2, 61137 Brno

Czech Republic

In our paper [1] the main idea was to get a general expression for the resolution or (when
considering unavoidable axial aberrations - spherical and chromatic - and the finite source size) in
terms of wave optics. The resulting expression enables to choose an arbitrary criterion for the
resolving power and to seek for the maximum resolution (optimization is being performed with
respect to defocus and image aperture angle) in an analytical way. Our predictions for the resolution
were compared with the results of Mory [2] and Barth [3]. Hammel and Rose studied similar
problems in [4],

The discussion in fl] did not concentrate on another result - a form of the intensity distribution
function | (a) (et being the radial coordinate in the observation plane). This function depicts the
probe profile in the observation plane. The main effort of our present work has been directed to
study the possibility of verifying the validity of I (a) experimentally. Basic idea was to design an
appropriate optical alignment, whose optical parameters would enable us to measure the probe
profile on the screen (the CCD camera is supposed as a detector). In order to get a sufficient
magnification within the optical distance, where disturbing effects can be neglected, we have to
work with a multi-lens system. We have considered a column with three lenses working in different
modes. Using the computation program ELD [5], we were trying to design lenses suffering from
very large spherical and chromatic aberration coefficients for given focal distances and
magnifications. In such case we should obtain measurably wide probe spot close to the diffraction-
limited situation, where our | (a) form is exact as a consequence of used approximation.

We assume that it is possible to derive similar formulae for the other experimental configurations,
where only one aberration term becomes dominant.

[1] R. Kolafik, M. Lenc: An expression for the resolving power of a simple optical system. Optik
106(1997) 135-139.

[2] C. Mory, M. Tence, C. Colliex: Theoretical study of the characteristics of the probe for a STF.M
with a field emission gun. J. Microsc. Spectrosc. Electron. 10 (1985) 381-387.

[3] J. E. Barth, P. Kruit: Addition of different contributions to the charged particle probe size. Optik
101 (1996) 101-109.

[4] M. Hammel, H. Rose: Resolution and optimum conditions for dark-ficld STEM and CTEM
imaging. Ultramicroscopy 49 (1993) 81-86.

[5] B. Lencova: Computation of electrostatic lenses and multipoles by the first order finite element
method. Nucl. Instr. Meth. A363 (1995) 190-197.
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Surprisingly, it is still possible to find references to problems with the use and accuracy of the
FOFEM with small meshes (e.g. Tsuno in his chapter on magnetic lenses in [1] or Khursheed in
1997 in [3] or at CP05). The same arguments hold for the use of graded meshes: if most users
see that the axial field behaves strangely at the places where the mesh step change abruptly, the
most natural solution is the use of smoothly graded meshes. Another fact that nobody uses the
value of the integral of magnetic field along the axis and/or around the lens as a check of
correctness of the magnetic lens computation is really difficult to understand.

Next question is that of computation accuracy. The accuracy of any ‘mesh’ method
depends on the type of mesh and the number of mesh points used. 1will in this respect briefly
mention an important but overlooked aspect of checking the accuracy of FEM computations, the
extrapolation to ‘infinite number of points’; the first example of that for magnetic lenses we
published already in 1994 [4], and | have discussed this in detail at CP05.

In the practical application of any program, the aspect of user friendliness and user
interface becomes important. We have devoted to this aspect a lot of attention in Brno as well
as in Delft in our software packages, that use a unified approach to magnetic and electrostatic
lenses and multipoles. The computation times are reasonably short, and cheap and available
personal computers are used for the computations. In the user interface graphical editing is used,
the generation of graded fine mesh is done automatically, and all results are shown or exported
graphically. The program packages thus meet most requirements from a user point of view, in
spite of leaving some space for improvements, because the interfaces were written in a pre-
Windows time. The numerically obtained results are accurate enough to allow not only comput-
ation of paraxial properties and aberrations from axial potentials or fields but also ray tracing.

SOFEM by Munro group was introduced 10 years ago, and it is often put as a competitor
to FOFEM. This seems to be the case of their program SOURCE for calculating guns and space
charge limited beams. In spite of the considerable span of time since the introduction of SOFEM,
hardly any attention is given to accuracy (an exception being the discussion of the computation
accuracy of axial potential in a two-cylinder lens by Munro in [4] and later by me at CP04 where
it could be shown that the FOFEM produces competitive results). Electrostatic lens computations
seem to work, although the mirror results in [1] are surprisingly inaccurate (as discussed in 1996
at this seminar). In magnetic lens computations with SOFEM no lifhit of maximum number
of points is ever mentioned (but it is known that it is impossible to calculate on large meshes).
No integral along the axis is computed, so the very basic check, if the result is correct, is missing.
Some of the SOFEM results on saturated lenses look strange [7]. What is published by Munro
on the computation of multipole components with SOFEM is even ridiculous, and the same
error since [4] is in [1]. The FOFEM implemented by Munro does not work properly for the
computation of hexapole field component in deflectors, in particular with small number of points
and with large mesh step change at the place where the field is still strong and varying (the
computations in meshes where the problem is stated last less than 1 s on obsolete 486 PC), and
their program does not work for 5th harmonic component at all. It does not mean that this is a
problem that cannot be handled by FOFEM accurately [8]. As a summary | do not see SOFEM
as the ‘competition’ of FOFEM, and | would like to see more accuracy tests of the method.
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program) for three problems where analytical solutions are known: spherical analyzer, thin
aperture between two regions of constant field, and a two-cylinder lens, where computation
accuracy was given against computation time. The results in 3D computation were added for the
presentation at CP05. One test was actually left out, which can be used as an ultimate test of any
electrostatic program: the dipole mirror of Preikszas and Rose (see the notes for 1996 seminar).

Conclusions

Even the best software for electron optics cannot solve all problems. A ‘dedicated’ user
can produce ANY result - including often the biggest nonsense. Sometimes this is a consequencc
of the usual ‘human’ approach to computers and programs: some people tend to trust any result
produced by a computer if it keeps them from thinking. Are there any ways how to prevent this?

Another fact is that in the places where the actual research is done into computational
methods and extreme applications of programs, nobody is actually interested in having a nice
program as an output. Should the universities do more to finish the software into a commercial
product? Everyone implicitly requires a full range of services (Windows interfaces, on-line help,
full documentation, many options implemented in a program), but is there somebody really
willing to pay for all these features? What should be in a good software for electron optics?
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OPTIMAL SYNTHESIS OF CHARGED BEAM FOCUSING SYSTEMS

G Martinez(@, A D Dymnikov<d)and A H. Azbaid@®
(@Dept. Fisica Aplicada Ill, Fac. de Fisica, Universidad Complutens, E-2H040 Madrid, Spain
A C.ILKM.A.T., Avda. Complutense 22, E2H040Madrid, Spain

One of the main characteristics of contemporary Science is a quick creation of knowledge that
is frequently associated to the appearance of new or more refined measurements There has
been a continuous improvement of the existent instrumentation and a development of
sophisticated new devices that has made possible this outstanding progress.

To go on this tendency we need to prepare appropriate tools: mathematical and physical
models to simulate the behaviour of a system and the way in which this behaviour can be
optimized. In this talk | will present a scheme of work that we are applying to the optimal
design of electrostatic lenses. Even if this is a small area in Charged Particle Optics the
scheme could be extended to other beam guide systems

The direct method for finding the optimal design would be to compute simultaneously the
field and trajectories of the particles through the quadruplet, but these trial and error tests
demand a huge amount of computing time that is not possible to do in practise To overcome
this problem we use two models: an analytical model and a numerical field model The first
one utilises analytical functions for the axial electrostatic potential and its partial derivatives
W ith these functions it is possible to obtain the analytical solution in matrix form up to the
desired order approximation, in our case up to third order. In the analytical model the initial
approximate differential equations are replaced by the linear equations in the space of the
phase moments with the same approximation accuracy. Thus we can use all the advantages of
linear differential equations over non-linear ones, including the independence of the matrizant
ofthe choice of the initial point of the phase space [1],

An interesting finding is that placing two slits at the appropriate place before entering the lens
allows to shape optimally the initial beam and to obtain the minimum spot size aMhe target
By this way it is possible to find the optimal parameters of the system with minimum
computing time

At the second stage we apply an accurate version of the boundary element method which
simulates the geometry of the real system and performs a very precise calculation of the field
In fixing the initial conditions for ray tracing, we use the information provided by the
analytical model Thus, the combination of both techniques allows tfle synthesis of the best
lens in a straightforward way.

As a first example let us consider the optimization of electrostatic axisymmetric lenses
consisting of multiple coaxial cylinders [2], A new analytical model of the axial potential
distribution is applied which corresponds to realistic multiple cylinder systems. Using the
version of BEM described in reference [3] to solve Laplace’s equation we obtain the
parameters of the physical model that has the same axial potential distribution as the
analytical model The parameters of the physical model are lengths and radii of the cylinders,
the gaps between them, and the applied potentials. Figure 1 shows the computed axial
potential for a 3-cylinder lens and the corresponding analytical function The coincidence
between the two profiles allows matching the focal distance and the demagnification within at
least three digits.

To analyse the beam spot size we find the matrizant (or transfer matrix function) for the linear
and nonlinear equations of motion using the effective recursive computational method
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THE MICROANALYTIC PROSPECTS OF A HIGH RESOLUTION PEEM
M .Merkel(1), M.Escher(l>, O.Schmidt<d, Ch.Ziethen(2), G.Schénhense<d

(,):Focus GmbH, Am Birkhecker Berg 20, D65510 Hiinstetten-Gorsroth, Germany
(2= Universitat Mainz, Institutfiir Physik, Staudinger Weg 7, D55099 Mainz, Germany

Using synchrotron radiation at BESSY or a Mercury lamp we perform microspectroscopy
experiments with a photoelectron microscope (FOCUS IS-PEEM) equipped with an electron
energy analyser (FOCUS MICRO-ESCA). In this arrangement we are able to determine the
chemical composition of solid surfaces with a high lateral resolution down to appr. 250 nm.

sample
xly adjustable
via piezo drives

| Objective

Contrast aperture
size and X/Y
adjustable via
piezo drives

Stigmator/Deflector

Iris Aperture
size adjustable
(mech. feedthr. )

First Projective

Second Projective

Channeltron J |0

Energy Analyser

Multi Channel Plate
Fluorescent Screen

Imaging Device

Human Eye, Foto,
Video or Slow Scan
CCD Camera

Figure 1: FOCUS IS-PEEM equipped with the
H-ESCA energy analyser

The experimental set-up is shown in Fig.l: The PEEM is used to get a lateral image of the
chosen sample region with a resolution of today down to about 20..25nm. To get chemical
information of a certain feature this region of interest is centred in respect to the actual field of
view by means of the piezo driven x-y sample stage. Now the field of view is to be limited
using the iris aperture located at the first image plane of the microscope objective lens. The
iris aperture can be closed giving an effective field of view of down to about 250nm
depending on the actual total magnification of the PEEM. The deflecting potentials of the
analyser have to be switched on and choosing a suitable pass energy the energy spectrum of
the selected region can be taken. More detailed information is given elsewhere [1j,[2J.

For demonstration of the recent performance we show in Fig.2 an example: This PEIIM
micrograph was taken with a photon energy of 95 eV at BESSY | (Undulator 1J2 combined to
a multilayer optics). The sample consists of 20x20|im Pt-Co-Pt multilayer squares deposited
onto a silicon substrate. There are plotted three valence band spectra taken at different p-spot
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A COHERENCE FUNCTION APPROACH TO MULTISLICE THEORY
H. Miller and H. Rose

Institute of Applied Physics, Technical University Darmstadt,
Hochschulstrafie 6, D-64%89 Darmstadt, Germany.

The simulation of high-resolution electron micrographs is a valuable tool for determining the
atomic structure of objects by means of electron microscopical techniques. Although a number
of different simulation methods have been proven useful, a quantitative correspondence between
HREM simulations and experimental images has not yet been reached.
To take the step from qualitative to quantitative HREM image simulation, a theory of image
formation which is solely based on the propagation of the stationary wave function of the
scattered electron proves to be insufficient. To avoid this shortcoming, we have proposed
a theory of image simulation based on the propagation of the stationary mutual coherence
function [1]

Tdp,p. 9= {iApYi=(E.t-T)T. )
Here 1 is the electron wave function and (.. denotes the time average over the recording
time T of the micrograph; p, p' are 2-dimensional coordinate vectors perpendicular to tin-
optical axis. The recorded intensity in the image plane is given by I(p) = Tc(p,p' = p,r =0) —
(I'i"'ip,i)|2)r- The coherence function approach correctly accounts for the partially coherent
nature of the electron optical imaging process and the quasi-elastic and inelastic scattering
processes within the object. The propagation of the coherence function through the object
can be calculated efficiently by a generalized multislice formalism [1,2]. In this formulation
the scattering properties of each thin object slice are approximately described by the mutual
transmission function

M (p,p',r) =exp (i(pi(p) - Pi(p")) ~ g (M p)+ Mp")) + Pn(p,p\r)) = ()

This transmission function depends only on the first and second stochastical momenta of the
projected slice potential considered as a time-dependent stochastic process. This approach
considers the fact that for weak objects the ideal inelastic image represents the variance of the
projected potential [3]. The terms in the exponent are explicitly given by

p\{p) = (x(p,*))t, M p) = Mil(P,ff —PiT —0),

pn(p,phn) = ((X(p, 1) - pHR)(X(P', t- 1) - px(p)))Tm

The second relation ensures that our formulation does not violate tKS optical theorem as it is
the case for the conventional multislice theory which uses an absorption potential to account
for inelastic scattering. The information about the stochastical measures pi, p-, and p\\ can be
calculated from simple analytical models describing the elementary quasi-elastic and inelastic
scattering processes with a sufficient degree of accuracy. Currently we employ the Einstein
model of lattice dynamics for thermal diffuse scattering and a modified Raman Compton ap-
proximation for inelastic electron scattering resulting in electronic excitations [L,2].

To demonstrate the feasibility of our calculation method we have simulated unfiltered diffrac-
tion patterns of Si (110) for different crystal thicknesses. The calculation considers the influence
of elastic, quasi-elastic, and inelastic scattering processes within the object. The results are
compared with experimental diffraction patterns of specimens of comparable thickness. The

®
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VARIABLE MODE RETARDING FIELD ELEMENT FOR LOW ENERGY SEM

I.Miillerova, L. Frank and E. Weimer*
Institute o fScientific Instruments AS CR, Kralovopolska 147, 612 64 Brno, Czech Republic
LEO Elektronenmikroskopie GmbH, 73446 Oberkochen, Germany

Today's trend toward low electron energies in a SEM is motivated by reasons connected
solely with the specimen itself. At low energy electron impact, the interaction volume
diminishes so that the information is better localized, the total electron yield is generally
higher and the specimen charging-up can be suppressed, and moreover many new types of
contrast appear. Contrary to this, although significant progress has been made in designing
low voltage guns and electron optical columns, principal needs for keeping the beam energy
at least at few keV throughout the column cannot be avoided. These include suppression of
influences of both the external stray fields and the mutual interactions of the beam electrons,
and extraction of a sufficient current from the cathode. Using the SEM designs employing
variable electron energy along their trajectory between the gun final anode and the specimen
can combine both demands.

One important possibility is to use an integrated beam accelerator or booster [1,2]
which holds the beam, between the gun extractor and the objective lens, at an energy higher
than the landing one, which is given by the cathode potential with respect to the earthed
specimen. An immersion electrostatic lens, combined with a normal objective lens, closes the
booster. The combination lowers the aberrations and they even decrease with the increasing
immersion ratio or decreasing landing energy. Alternative is to apply a high negative bias to
the specimen and to lower the beam energy immediately above the specimen surface with the
help of a cathode lens [3,4]. This combination is capable of preserving a nearly constant
image resolution throughout the energy scale and even commercial SEMs can be adapted to
this mode, provided a special detector is fitted [5,6].

The operation of the booster is limited by a maximum reasonable immersion ratio of
its closing lens - otherwise it becomes too strong to form the probe [7], For a 4wo-aperture
lens with the aperture distance D and "sharp" field transitions in electrodes, we get, from a
simple analytical calculation [8], the lower focal point lying at the distance D below the lower
aperture already at an immersion ratio of 7. Computer simulation [9] brings the ratio of 36 for
both aperture diameters equal to D while the field strength on the specimen reaches already
5% of the full value. The focusing power is further increased by the magnetic lens so that one
can consider this principle viable down to electron landing energies pf 200-500 eV only. Ihis
energy range brings already most of the advantages mentioned above. Nevertheless,
principally new contrasts appear below 50 eV where the electron reflection yield acquires a
vector character, dependent on the specimen crystallinity, and wave-optical contrasts become
possible. In addition, the probing depth starts to increase again, weakening the vacuum
demands. This range can be reached only with a cathode lens with the full field strength on
the specimen surface and difficulties connected with the specimen biasing.

A booster equipped SEM column (Fig. la) offers a very efficient way of combining
both described methods. When insulating even the lower immersion lens electrode from the
column body, one can simply switch the retarding field to the cathode lens mode but with the
advantage of the specimen earthed (Fig. Ib) - in-lens detector is then available only.
Furthermore, an insulated specimen holder enables one to use also a highly efficient
(retractable) anode/detector assembly (Fig. Ic).

The variable mode arrangement makes the full energy scale accessible with the
possibility to adjust the electric field on the specimen.
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SHORT NOTE ON LOW-ENERGY SEM CONFIGURATIONS

I.Millerova and L. Frank
Institute o fScientific Instruments AS CR, Kralovopolska 147, 612 64 Brno, Czech Republic

There are good acknowledged reasons to lower the landing energy of primary
electrons incident onto a specimen in the SEM down to hundreds and even tens and units of
eV. But there are equally good reasons to produce the primary electron beam at a high energy
oftens of keV. To satisfy both, SEM designs are desirable in which fast primary electrons are
decelerated somewhere in front ofthe specimen surface.

Modifications of this general principle, proved to date, can be divided according to
where the deceleration field is applied. It can simply be between two bored electrodes of an
electrostatic immersion lens fitted into the magnetic objective lens so that the fields overlap.
Another alternative is to replace the final electrode with the specimen, i.e. to use the cathode
lens. Both approaches differ mainly in the electric field intensity on the specimen surface. A
higher field causes a more effective collimating of the emitted electron toward the axis, which
affects the detection conditions. On the other hand, the specimen geometry, tilt and surface
quality become more critical. Some specimens can be even intolerant to a high electric field.
The main difference is that the aberration coefficients keep proportionally decreasing down to
the lowest energies for the cathode lens [1] while for the immersion lens, it falls only down to
values similar to its working distance [2,3].

Both versions can be treated in the dependence on the working distance w of the
electrostatic immersion lens, so that the cathode lens is for w=0; this is similar to the
systematic approach in [4]. Fig. 1 shows the electric field on the specimen surface, as a
function of w/D, where D is both the diameter and distance of the electrodes. Obviously, the
surface field can easily range in tens of per cent of the maximum while the aberration
coefficients still remain in tenths of w while for the cathode lens they are roughly equal to D
divided by the immersion ratio. This speaks in favor of the cathode lens whenever it is
applicable.

A further aspect is that for a compound lens composed of electrostatic and magnetic
lenses, both aberration contributions are generally comparable. For a cathode lens, the
focusing lens influence diminishes at very low energies and the resolution is mainly governed
by the axial electric field (see Fig. 2). Consequently, if a cathode lens can be fitted into an
existing SEM, good results can be obtained irrespectively of the original SEM performance.
Furthermore, the effect of such an adaptation is enhanced due to the favorable property shown
in Fig. 3. If the beam aperture is kept constant at a value aligned for a certain landing energy,
the image resolution remains acceptable and moderately offset from the ultimate value
throughout the energy scale.

From the practical point of view, the landing energy is defined by a (small) potential
difference between the gun cathode and specimen while the (high) column energy can be
reached either by biasing both negatively or by biasing positively the whole microscope
column. The second case is discussed elsewhere in this book [5], the first [6] can be even
applied to commercial SEMs. In a cathode lens, the full electron emission is, in the anode
plane, collimated to within a diameter of 4w(k-1)'/2 where k= Ep/EL is the ratio of primary
and landing energies. This enables one to employ, for the cathode lens based configurations,
both the EDOL-type in-lens detection [7] with electrons passing through the anode opening,
and an anode/detector combination with a very small central bore (made e.g. from the YAG
crystal). The latter type has a very high efficiency but needs a working distance of 8 mm at
least. Doubts have been many times expressed as regards restrictions, put onto the specimen
surface properties when the specimen serves as the cathode in a cathode lens. Particularly, the
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A STUDY OF WAYS OF IMPROVING THE SPEED AND ACCURACY OF
COMPUTING FIELDS, TRAJECTORIES AND ABERRATIONS IN ELECTRON OPTICS

E. Munro, X. Zhu, J. Rouse and H. Liu
Munro s Electron Beam Software Ltd, 14 Cornwall Gardens, London SW7 4AN, England.
Tel. & Fax: (+44) 171 581 4479 e-mail: mebs@compuserve.com

The main objective in the computer simulation of electron optical systems is usually to predict
as accurately as possible the image blurring and distortions of an imaging or probe-forming
system. This essentially involves computing fields, trajectories and aberrations. The
traditional way of doing this is to compute the electrostatic and/or magnetic field distribution
along the system axis and then evaluate the primary aberration coefficients with a set of
aberration integrals involving the paraxial rays, axial fields and their axial derivatives.

Although this traditional method has served electron optical designers well, the design of
some of the latest instruments is straining the capabilities of the standard simulation methods.
Examples that are hard to simulate by traditional methods include LEEM systems, aberration
correctors, electron mirrors, curved axis systems for beam separators, Wien filters, etc. In
LEEM systems, images are formed with electrons emitted from the sample surface with low
energies and large angles. At such low energies and large angles, conventional aberration
analysis may become inadequate, the energy spread can dominate the initial energy, and the
concept of chromatic aberration coefficients may become almost meaningless. In aberration
correctors, analysis of high-order and asymmetry aberrations may be needed, and this is very
complicated using conventional aberration analysis methods. In mirror systems, conventional
aberration formulations break down near the reversal point, and very involved theoretical
treatments are needed unless direct ray-tracing is used. For curved axis systems and Wien
filters, the expansion of field functions, paraxial rays and aberrations of various orders about a
general curved optical axis involves great complexity and enormous scope for mistakes.

To help address such problems, the aim of this paper is to investigate methods for improving
the speed and accuracy of numerical field analysis and direct electron ray-tracing. The aim is
to identify areas where improvements can be made in the simulation techniques. In particular,
we aim to try to compute field distributions very accurately (off-axis as well as on the axis),
and to see how fast and accurately we can directly compute rays through these fields, without
resorting to aberration theories. We then compare the results of these simulations with
conventional aberration results and try to assess the relative merits of the various approaches.

The most difficult task, by far, in most electron optical simulations, is accurate field analysis,
since if the fields are known accurately the trajectories can be computed with negligible
truncation errors, using high-order Runge-Kutta or Bulirsch-Stoer methods [1|. For high
accuracy field analysis of structures with rotational or multipolar symmetry, second order
finite element method (SOFEM) [2] is in principle an attractive candidate. Isoparametric
second order finite elements use biquadratic basis functions for both the element geometry
and the potential. The biquadratic element geometry allows the elements to be curved, thus
allowing accurate geometrical modelling of structures with curved cathodes, electrodes,
polepieces, grids, etc. The biquadratic potential functions allow a closer fit to real potential
distributions than linear basis functions do, for a given number of grid points.


mailto:mebs@compuserve.com

xbs 1nain difAsubx SOCEAd 1s [bsl 1)s inusb inols soinplisalsd fo plosfgin fhgn Nifs[
ofdsl Anifs dsinsn[ ins[bod (]-Orervr), 3and [bsls bgys bssn 1nols difAsulliss in usins [qgs[
squ3fion solesls sugN 35 Ill0 TEQQ !nsfbod, bisb b3s plovsd so susssssful WA (OI--:W]

oul sssond-oldsl Teeg Solvst works sl Wifb corgarfonalix sxiNiNseeis ssalar porsnridl
plobfsins (s|ssffoslqlis [snsss 3nd 1ngsnslis |sns polspisss gndxsis bx Inagnsns ssalal
polsnfi3]), buf b3s snsounfslsd soins dilAsulfiss wilb Iingsnshs esslol pofsnfig| gng|xsis (fof
ingsnsiis [sns [ngsnslis dfsuils), |Nbsls Il b3s soinsfiinss soneslfgsd sjow[x of nol gf3)] |n
susb sqgsss, ws bgys sfi|| bssn using dgussign sbininglion, |Abisb 1neojess bisb sosl in bolb
insinolx gnd sxssulfon [1ins [n [bis p3psl, ws dissuss soins nnplovysinsnls ws gfs [fxing o
ing)is 1n oufl sssond-ordst TogQ solesl [o oeslsolns [bsss plobisins  xbsss induds (|) pfs-
ditningflion ol [bs in[sfngl nodss In s3sb sssond-ofds[ s[sinsnl - [bis [sdusss [bs nunibs[ of
squglons by z59p, gnd [sdusss [bs nuinbsl of [snns psl squ3fion, gnd [bs [squifsd nuinbsl of
ilsfafions, bisb g|| soinioins fo sisniflisqnllx 1nsfsgss soinpul3fion spssd \wilboul |oss of
gssulgsx, gnd (I) [fsqhing 3|| [bs nodss, Instudins g|[ boundgix nodss, gs possibis wangblsse [o
sngbls sxininsllx plgnss 3nd wgnous bound3ix sondifions af [bs gxis (ss [ssunignn
boundgriss ol [bs ssalal pofsnfig) gnd Oirisbisl boundgnss [of [bs esslol polsnfigl) o bs
b3ndfsd bx [bs sains sofles[ in 8 uniAsd wax Assdls oblfginsd wilb [bsss 1inplowsinsnls w(]|
bs plsssnfsd \As bgys ussd gn gnglxfis 1nodd [ol q bipolsnfig] [sns o sbsd< [bs gssulgsx ol
[bs soinpufsd Adds, oll-gxis gs \d[ gs on [bs gxis [bis [nodd sqn bgndls sxasl|x bolb [bs
sqss \vbsls [bs Jsns dssflodss qls [snningls gl Anifs disfgnss (usins q dissfsfs founs[-6sssd
ssnss) gnd | bels [bsx go fo nAnilx 1n [bs gxiq] difssfion (using g founs[-6sssd 1nfsglq|)
[bis sngblss us [o gsssss plsdsdx [bs [[nnsqlion sffofs inffodussd in [bs [inils dsnisnf
insfbod mbsn [bs Add og[sulglion 1s [snninglsd bx boundgnss qf g Anifs dis[gnss

cor dicsse c3\-rradng, 3ssurars valuss or fbs risld sonIPONSNCS 3r ore-axIs polncs 3rs nssdsdm
Avilbin g Anils dsinsnl, [bs Asld soinponsnls sqn bs obfginsd bx gn inlsfpo|3fion sobsins
bsfm'sen [bs polsnfids af nodss ilbin [bs Anifs s|sinsnl 3nd [bs polsnfi3] af nodss of [ouf
suffounding dsinsnfs (1neofeins d) snd poinfs) gomnparIson \vlifb fbs gng|x[l's tnods| [ssu]ls
shons [bis insfbod 1s gssulgls - Add soinponsnls sqn bs oblginsd fo ] pgerin 100 yowsesim
[bs 1nsfbod 1s slow \®bon [[qssfonss gfs soinpulsd bx [bis insfbod, ons [faissfolx san [3l<e
3boul 07 sssonds [o soinpuls fo gn Josul30X .r TO T ong |SO NIfdz [snliuin-bgssd ['(
xbis ingx bs un3gsssplgb|x s[ow [of [bs dssfsn ol Tee m sxslsins, bsls [sns of [bousgnds of
[fqissfonss [ngx bs nssdsd [o oblgin gssulgls sbslfglion infonnglion bx difssl [gx-[[gdne

[0 oeslsoins [bis plobfsin, ws bgys bssn nesshigafing resfbods fof [spfsssnfins [bs polsnllg|
gand As|d soinponsnls nsql bs ophog] gxis using gnglxfis funsfions s Nfsl soinpuls [bs
Add disfnbufion using sorHIv]. Wb [bs 1nssb fgxoul quifs [ssfansd3l in [bs (z4) p|3ni g
ssnffal oxi{ndnog| fsston of [3dius A glound [bs gxis (A bdns [bs oulsl[nosi fgdius [lbui
Wbisb ws wi]| Jqfsl nisb fo soinpuls [bs [fgyssfonss)  [bsn gl s3sb plgns ., ws [g)s [bs
soinpulsd pofsnhgls ar A poinls in [bs r3dig| difssfion (fxpisallX I\l « 6), spsnwns [bs fengs
[foni> = 0 fon = A snd ws Al q polxnoinig], in ponsfs of A [blousb [bsss A* poinls  ()NIx
sesn polNSrS ofn afs [squilsd, booywse of [bs folefiong) sxininsfik, snd [bus [bs bisbssl dss(ss
f[snn In [bs polxnoinig] Al wic| bg ol dsslss z(N**), \w/€ soinpuls suob g po]xnonig| Al in [bs
radig) (1) dusarion, usins basfanss incsipolal:n ‘e do Misar egeb axigl (2) plane  fbsn ne
AT fTossIbs[ [bs [gdig] po[xnoinigls, in [bs axiq] (z) difsdion, using subis of qunlis spbns fifs
in [bs z difssfion 6x [bis Insans, [bs polsnfid (gnd fig|d soinponsnls) [bfousboul [bs snhfs
fssion ol infsfssl, afs sonp|sfdx Aflsd bx dsinsnlglx funsfions fo g bigh 3ssulgsyx, 1ssls
sbow o3l [bs fgdig] figld soinponsnls fblougboul fbs fsston, sompufsd wilb flie iniglpolg[lon
polxnoINiEls, aslss o bseese fban 1 pace In 106 Wifb (boss soinpulsd bx nunienegl diccsesndns
of (lg pofsnhids af 1bs Anifs dsinsnl inssb-poinfs yowsesl [bo Adds san bo soinpulsd



much faster with the interpolation polynomials. The field computation and the resulting
direct ray-tracing are both speeded up by at least a factor of 20, for the same accuracy. A
typical trajectory can be computed in about 0.016 seconds with less than 10 nm truncation
error. This enables 10,000 trajectories for a LEEM system to be computed, and the results
plotted, all in < 3 minutes. Results illustrating the technique will be presented.

In general, using the above method, the potential near the axis of a round lens is expressed in
the form:

0 (r,z) =c,(z) +c2(z)r2+cl(z)rd+... + cxlv-i>z)"2t" 1)

c'o(z) represents the axial potential, cifz) is related to the second radial derivative at the axis,
CA(z) to the fourth radial derivative, and so on. These functions have been plotted as functions
of z and are very smooth, well-behaved functions. Assuming the potential obeys Laplace's
equation, both the radial and axial derivatives of the potential, at the axis, can be directly
derived from these functions:

Radial derivatives at r=0: d"O/dr2 = 2co cf<t>/drA= 2Acn db<SSldb = 12()ch etc.
Axial derivatives at r=0: cNMVdz2=-4co  d&>/3z4= 64ch 56<t>/3z6= -2304c( etc.

These functions can all be obtained directly from the radial polynomial fits. Since the axial
derivatives are exactly the functions needed for computing aberrations by the ordinary
integral methods, these functions can be used to evaluate the aberration integrals directly,
without any need for integrations by parts, which greatly simplifies the formulae and their
programming. The aberration coefficients up to fifth order, or possibly even seventh order,
should be able to be computed accurately in this way. We are in the process of comparing the
aberration integral results with direct ray-tracing, for ordinary imaging systems, and hope to
present results of this at the meeting.

Techniques for improving the speed and accuracy of the direct ray-tracing itself are also being
investigated.  Instead of using a standard fourth-order Runge-Kutta formula, we are
evaluating a fifth-order Runge-Kutta formula due to Cash and Karp [5], which involves six
field evaluations per step. This formula is accurate to fifth-order terms in the Taylor series
expansion, but simultaneously also allows an estimation of truncation error on each step,
using an embedded fourth-order Runge-Kutta formula. This can be incorporated into an
adaptive step-size control algorithm, that optimizes the step size to produce a fast ray-trace
with the truncation errors contained below a specified threshold. This typically enables < 10
nm cumulative truncation error over an entire trajectory in < 100 steps.

We are also trying to apply the above techniques to the analysis of multipole and curved axis
systems and hope to also present some initial results for these cases at the meeting.
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ULTIMATE RESOLUTION: WHAT ARE THE NEEDS FOR FUTURE MICROSCOPES?

Harald Rose
Institute of Applied Physics, Technichal University Darmstadt, D-64289 Darmstadt, Germany

To fully understand the properties of solid objects, a detailed knowledge of the atomic structure, the
chemical composition and the local electronic states is necessary. The atomic stucture of nonperiodic
details can be determined in principle by means of tomography provided that the resolution limit can
be lowered to about 0.06nm. In order to achieve quantitative information, a high-performance
imaging energy filter with an energy resolution of at least 0.2 eV at a voltage of 200 kV is mandatory.
If such a filter is incorporated in a combined STEM-TEM, it will become possible to elucidate the
bonding of segregant atoms and the local distribution of electonic states near interfaces or defects.

For achieving sub-angstrom and sub-ev resolution, an entirely new generation of electron
microscopes must be developed. The ideal future microscope will be a combined STEM-TEM
operating at voltages between 150 and 300kV. It will consist of a field emission gun followed by a
monochromator yielding an energy width below 0.2 eV. The condenser system must provide genuine
Koehler illumination for the TEM mode and a spot size of about ,2nm for the STEM mode. This
system also enables selected-area diffraction with variable cone angle if the diameter of the
illuminated area is large compared to the diffraction-limited spot size. The spherically corrected
aplanatic objective lens will consist of coma-free round lens and an integrated hexapole corrector. The
formation of a spatially extended energy loss spectrum is performed by the highly dispersive
aberration-free MANDOLINE-filter which has by far the highest transmissivity and the best overall
performance of all filters proposed so far. The filtered intermediate image or the energy loss spectum
are imaged onto a CCD array by means of an aberration-free projector system consisting of several
lenses. For obtaining sub-angstroem resolution it is a "conditio sine qua non" that the incoherent
defects resulting from parasitic mechanical and electromagnetic instabilities are reduced to such an
extent that the information limit is pushed below 0.06 nm. The realization of this ambitious task is by
far the most difficult problem encountered on the route towards sub-angstrom resolution.
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Emission Spectra of Single Crystal Scintillators for S(T)EM of PMT Photocathodes

400 450 500 550 ceo) 650 700 450 500 550 600
wavelength (nm) wavelength (nm)

Figure 1 Normalized cathodoluminescent spectraof ~ Figure 2 Normalized spectral response of the
single crystal scintillators for S(T)EM. sensitivity of the photocathodes used.

Table | spectral properties of single crystals for S(T)EM

spectral characteristic

single crystal maximum" FWHM"' S20 PMT SIl PMT
(nm) (hm) matching™’ (%) matching™* (%)
YAG:Ce 560 122 73 45
YAP:Ce 366 52 60 58
P47 420 77 85 80
CaF2:Eu 426 30 92 88

‘position of the maximum of the main emission band.

"full width of the half maximum of the main emission band
**matching to the spectral response of S20 photocathode
“"matching to the spectral response of S11 photocathode

with alkali photocathodes. In the case of YAG:Ce, it is necessary to use the S 20 photocathode
(its long wave spectrum region differs from that of S 11). All other single crystals investigated
can also work with the S 11 photocathode. In addition to the characteristic broad yellow emission
band with a maximum at 560 nm, the YAG:Ce shows a very weak emission in the blue, violet
and UV spectrum regions. This weak emission which is more marked for specimens with a low
activator concentration has a sharp maximum at 400 nm which is superimposed on the broad
emission band with a maximum in the UV region, i.e. beyond the capabilities of the measuring
device used.

Efficiency

For all applications in S(T)EM, high CL efficiency is required. The relative CL efficiency of
the investigated single crystals is shown in Table H The values of this quantity are always related
to the corrected value of the YAG.Ce single crystal. The as measured integral (spectrally non-
decomposed) efficiency includes the influence ofthe PMT photocathode spectral sensitivity. This
quantity is interesting from the viewpoint of application in scintillation detectors where the
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Table I11 Decay properties of single crystals for S(T)EM

time characteristic

single crystal decay time" corrected decay time" afterglow™*
(ns) (ns) (%)
YAG:Ce 110 103 2
YAP:Ce 45 38 0.5
P47 41 34 unmeasurable
CaF2:Eu 1200 1200 13

‘uncorrected for the time response of the measuring equipment
“corrected for the time response of the measuring equipment
"'intensity measured 5 ps after the end of excitation

and the afterglow amounts to less than 1 %. In fact, with respect to the fall time of the pulse of
the excitation electron beam (5 ns) and the fall time of PMT (2 ns), the short-term decay
component must be corrected by subtracting approximately 7 ns of the fall time of the measuring
equipment. The short-term component of the CL decay ofboth yttrium aluminate single crystals
depends only negligibly on the duration of excitation. On the contrary, the long-term component
ofthe CL decay depends strongly on the duration of excitation, so that for a very short excitation
the afterglow of YAG:Ce and YAP:Ce can be one order and at least two orders lower,
respectively. This is advantageous for applications in S(T)EM electron detectors operating at the
TV rate, because the images with a rich topographic content can be of higher quality.

CONCLUSION

Unfortunately, all single crystals that have their CL decay time shorter than 100 ns (which
is the condition when the TV scan frequency is used) contain oxygen and just thiS*group of single
crystals belongs to those with the least efficiency [2,3]. This means that calcium fluoride, which
is the most efficient of the four chosen, has only limited applicability because its decay time
constantis 1.2 ps. The greatest advantage of YAP:Ce single crystals and P47 is that they are the
fastest (38 ns and 34 ns, respectively). Especially, they have no such amarked componentoflong
persistent luminescence as the YAG:Ce single crystals have. The only disadvantage of YAG:Ce
single crystals is their speed which can be behind the limit for the'TV rate in some cases. It is
therefore necessary to search for a way to shorten the decay time of YAGtCe scintillators.
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SPECTROSCOPIC X-PEEM WITH EMPHASIS ON MAGNETIC CONTRAST

G. Schénhense
Institut fir Physik, Johannes Gutenberg-Universitat, D - 55099 Mainz

Structural tayloring of magnetic films is a rapidly growing field of research and development
because it offers additional parameters for the control of magnetic properties. Vertical
heterostructures (multilayers) offer a wide range of technical applications e g. in magnetic
sensor technology (read heads, position sensors) because of the giant magnetoresistance
(GMR) effect. Horizontal patterning is crucial for novel devices such as magnetic tunnel
junctions for spin transistors being the basic units of future non-volatile magnetic storage
elements (MRAM). Also high-capacity hard discs require the controlled creation of well-
defined magnetic domains with lateral dimensions down to the 100 nm range.

For all these systems there is an increasing demand of powerful microanalytical tools in the
sub-micron range. For patterned structures a resolution of several 10 nm is desirable, for
multilayers it would be advantageous to view "buried layers"”, i. e. to look through a non-
magnetic coating. Most of the above-mentioned materials are composed of several chemical
elements or intermetallic compounds. Since the constituents contribute differently to the
magnetic behavior, it is necessary to distinguish the various magnetically active components in
a system. Consequently, an appropriate magnetic imaging technique must combine magnetic
sensitivity with element specificity.

The pioneering work of Stohr et al. [1] has demonstrated that Synchrotron-based
photoelectron emission microscopy in the soft X-ray range (X-PEEM) is a highly promising
technique to attack these problems. If the magnetic X-ray circular dichroism (MXCD) as
investigated by Schiitz et al. [2] is exploited by using circularly polarised Synchrotron
radiation, the magnetic contrast of a selected element becomes visible.

This contribution will give an introduction into the technique [3] and illustrate its performance
by means of several typical examples. Technical problems like the chromatic aberration due to
the energy distribution will be addressed. The base resolution of our instrument (FOCUS IS-
PEEM) is less than 20 nm, visible in threshold photoemission at hv = 4.9 eV [4] Operation in
the soft X-ray regime results in an effective energy distribution of the imaged secondary
electrons with a width of 5-10 eV. This width has been confirmed by spectroscopy using the
Micro-ESCA analyser [5], The energy width leads to a significant chromatical aberration
yielding a total resolution of 120 nm. Approaches to improve the resolution e g means of a
novel Time-Of-Flight mode of operation [6] will be discussed.

Typical results [7,8] are shown in Figure 1 Micro-patterned layers of permalloy (left), a Co/Pt
multilayer (middle) and an epitaxial Co-film on Cu(100) (right) have been viewed by means of
the magnetic circular dichroism contrast at the iron and cobalt L-edges. Despite of their similar
dimensions, the three structures exhibit completely different domain patterns The permalloy
squares show a simple flux closure structure with very few exceptions (like the defect-induced
distortion near the centre of the left image). This general behavior reflects the small magneto
crystalline anisotropy and the tendency to minimize the magnetic stray field. The Co/Pt
multilayer of 7 periods (2.1nm Pt / 2.5nm Co) shows a complicated domain pattern
("magnetisation ripple") being indicative of its high intrinsic anisotropy and the polycrystalline
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THREE DIMENSIONAL SCANNING ELECTRON MICROSCOPY

W. Slowko
Institute ofMicrosystem Technology, Wroclaw University of Technology, ul. Janiszewskiego

11, 50-327 Wroclaw, Poland

Introduction

Humans and all higher animals are two-eyed so three-dimensional viewing the surface
topography should be an expected standard for most electron optical instruments. The subject
has also very practical meaning. Quantitative characterisation of surface micro-topography is
one of most essential problems in many fields of science and technology, as for instance:
microelectronics, micromechanics or tribology of magnetic media. Scanning electron
microscopy (SEM) is a very important tool for inspection and measurements of geometrical
issues of semiconductor structures (e.g. critical dimensions). Apart from its high lateral
resolution, main advantages of SEM are that it imagines the surface topography in the way
preferred by human eyes and is very operative to find out some subtle peculiarities in large
surface areas. However, it still gives limited information about the third dimension of the
surface objects and to measure their elevation and side slopes it is necessary to make cross-
sections of the sample. Current investigations on the problem are focused on two groups of
methods [1, 2]: those based on principles of stereoscopy or making use of the specific angular
distribution of back scattered and secondary electrons (BSE & SE). Unfortunately, each
method shows some deficiencies and disadvantages, so three dimensional imaging still is not a
very popular technique.

Stereoscopic methods

The utility of a stereoscopic view of the world to communicate depth information
resulted in the use of stereo cameras to produce “stereopticon” slides for viewing. The
stereoscopic methods of a quantitative characterisation of the surface topography are based on
the same rules but they apply strict analysis of the relations between two images registered
from two points of view. The idea can be explained on the example showed in Fig. I, where
different images can be obtained by shifting the sample or viewpoint. In this case, the elevation
difference H between the two points, A&B, results from the parallax (cl/ - d2), i.e. from the
distance ofthe two points measured in the horizontal direction:

H - wd(d,-d2/s , A (1)

where S is the shift distance and Wd is the working distance.

Fig. 1 Characteristic dimensions used to estimate
the vertical height of objects when the tilt or shift
ofthe viewpoints is applied

Much greater displacement of the
viewpoints can be achieved when it is obtained
by changing inclination angles of the view
directions rather than by their parallel shift For
instance, the sample stage may be tilted by
angle P between the two images to change the
view directions (as in Fig. 1). This time, the
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probe microscopy (SPM) and confocal microscopy (SCLM). In this field better results can be
expected when the secondary electron signal is applied.
Secondary electrons are generated with Lambert’s distribution, so the current collected
by one of the detectors shown in Fig.2 can be written in the simple form [6, 7]:
/1i= iocosysec cppdSl (4)
<
where: igis a maximum angle density of the secondary current, proportional to the e-beam

current and secondary electron yield 50
After proper operations the expression for the detector” current takes the form:

la =io\d-tg(pp-co"®@A - 0P+c) (5)
that leads to the following eq. for the relative difference of signals of the detector A and B
la-1b dz
for 0,=0 and a- c/d (6)

la+lb dx ~’
where ¢ and d are coefficients of material and topographic contrast respectively. They depend
on the detector geometry, as it has been shown in Fig.3. Finally, an integral of the expression
represents the surface profile along X axis, i.e.:

dx +Q @

where: X X - are co-ordinates of the beginning and end of the scan line, Q -is an integral
constant equal with the surface profile height at the beginning of each scan line (numbered /).
For the two detector system all lines have to start from the same level. A fully three
dimensional image can be obtained when the second pair of detectors (C, D) is used to provide
information about surface slopes inyz plane. Then, the final expression defining the surface
topography along successive scan lines takes the following shape :

Ic-1n)
uc +11J

s
z(x,yt) =aj dx + 3 dy+cn (8)

la+1lb

The second integral reconstructs the surface profile in the/ direction (beginning with the initial
altitude Cr) along start points of all lines (x-X9, as it has been shown in Fig. 4.

d./cf
S 'Vt
Figure 3. Quotient of the detector geometry Fig.4. Scheme of the three-dimensional
coefficients against the detector declination reconstruction of the surface geometry

angle (-4- O.lrad, -9- 0.3rad, -0- Irad).

The formulas for signal processing, (7) and (8), can be realised both in analog and
computer systems . Analog systems seem more suitable for the reconstruction of the surface
topography in a shape of profiles which is a form oftwo dimensional representation and can be
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OX THE THEORETICAL UNDERSTANDING OF THE WIEN FILTER IN AN
ELECTRON BIPRISM INTERFEROMETER

Peter Sonnentag, Harald Kiesel, and Franz Hasselbach

Institut fir Angewandte Physik der Universitat Tibingen
Auf der Morgenstelle 10, D-72076 Tibingen, Germany

In recent years, A. A. Michelson’s visibility spectroscopy [1] has been realized suc-
cessfully with electron waves instead of light waves [2], For this, an electron biprism is
used, and as a counterpart of the different path lengths of the interfering beams in light
interferometry, a Wien filter in its compensated state is employed (see Fig. 1). A Wien
filter consists of a crossed electric and magnetic field, both being perpendicular to the
optical axis. It is said to be in its compensated or matched state if the electric and ma-
gnetic force for the main energy component of the electron beam cancel each other. From
the decrease in fringe contrast with increasing excitation of the Wien filter, the energy
width of the source can be determined, and even the form of the energy distribution can
be obtained in case that, it is symmetrical to its centre.

If the initial state of the electron is a pure state, i.e. all electrons form identical wave
packets, then the action of the Wien filter is to introduce a longitudinal shift between the
two partial wave packets coming from opposite sides of the biprism filament. Reduction
of contrast of the interference fringes can then be explained by the lack of overlap bet-
ween the two packets. The longitudinal shift is caused by the different group velocities
inside the Wien filter being due to a different electric potential. If, on the contrary, the
electron beam is made up of a statistical ensemble of electrons being in different energy
eigenstates, then - at least for narrow energy distributions - the loss of contrast, is the
same as for a pure state with the same energy spread, but in this case it is caused by
the displacement of the incoherently superimposed interference patterns relative to each
other. This comes from the fact that for electrons with an energy differing from the one
for which the matching condition is fulfilled there is a resultant force and therefore also
a phase shift. But in reality, we have neither a pure state of the electrons nor a mixed
state which is diagonal with respect to the energy eigenstates, so that both mechanisms
of the reduction of contrast will be involved.

Whereas the Aharonov-Bohm effects yield phase shifts without affecting the centres
of the wave packets, and the Sagnac effect or a homogeneous electric or magnetic field
in an electron interferometer lead to both a shift of the fringes and of their contrast,
the Wien filter in its compensated state produces a wave packet shift without a phase
shift so that in the middle of the fringe pattern there is always a maximum and this
is also a difference to Fourier spectroscopy with light. Because of this special feature of
the Wien filter it seemed worthwhile to do the calculation of the biprism interferometer
with Wien filter for the case of a wave packet explicitly. This was done by using a form of
the semiclassical approximation of the Feynman path integral for strongly localized wave,
packets [3].

For monochromatic waves and consequently also for incoherently superimposed mo-
nochromatic waves - the electron-optical biprism can be replaced by two virtual sources
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the phase difference Atp(k) of the two interfering parts of an energy component may be
approximated by the first order term in the deviation 8k of the wave number from its
main value ka. Then, the phase shift caused by the Wien filter is equivalent to a difference
in the geometrical path length in vacuum, so that is proportional to Mwp.

Fourier-transform spectroscopy demands a variable proportional to cer-¥>m There-
fore, neither E nor N - which has been used so far [2] - is suitable if the high precision of
visibility spectroscopy shall be fully exploited. Because iViap cannot be measured directly,
we propose to use j as the transformation variable, where s is taken from the recorded
fringe patterns.

For the case of a wave packet, the decrease in fringe contrast with increasing excitation
of the Wien filter can also be interpreted as being due to the increasing (possibility of get-
ting) “welcher Weg” (which-path) information available from the difference in arrival time
between the two packets. Another way how complementarity, in particular wave-particle
duality, may be enforced in “welcher Weg” experiments is entanglement with orthogonal
states either with the environment (e.g., measurement device) or with an internal degree
of freedom (e.g., spin). The effect of the Wien filter can, loosely speaking, as well be seen
as a kind of entanglement: If we write the ordinary state space of the particle as a tensor
product of the state space of positions on the detection screen and of the state space Z
of positions orthogonal to that screen (i.e., along the optical axis 2), then because of the
longitudinal distance Az of the positions of the maxima of the partial wave packets we
have entanglement with respect to the space Z.

Helpful discussions with Richard Neutze and Tomas Tyc are thankfully acknowledged.

a) b)
Fig. 1
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VARIABLE AXIS LENS WITH AN EXTREMELY LARGE
SCANNING AREA IN ONE DIRECTION

R. Spehr

Institute of Applied Physics, Technical University Darmstadt, Hochschulstrafie 6, D-67289 Darm-
stadt, Germany

In order to obtain a large writing area on a single line, we have developed an electron lens design
[lj quite different to that of usual variable axis lenses based on a round lens. The electrodes and
the polepieces are formed by three parallel slits which in the x-direction are extending infinitely,
at least in principle. Thus the geometry of the lens is translation invariant with respect to the
x-axis as it is customary for a cylinder lens. For stigmatic focussing we combine two different
fields, both fields being consistent with this geometry. Using a negative (or a positive) potential
on the middle slit, we get a retarding (or an accelerating) electrostatic cylinder lens focussing
in the yz-section [2). In addition we superimpose a magnetic quadrupole field, which is oriented
in such a way that focussing in the xz-section is achieved. This field is produced by fabricating
the three slits out of magnetic material (p.r » 105) and by placing windings on both halves of
the middle slit, which carry constant current density. In this three-dimensional arrangement the
magnetic scalar potential is given by

Umag = IS X F(y,z). ()

The function F(y, z) depends on the geometry of the slit in the yz-section and can be calculated
by a suitable charge simulation procedure, which only needs to be two-dimensional. From eq.(1;
we 6ee that the form of the magnetic potential does not change when moving into the x-direction,
while its value increases linearly. In practice the slits must have a final length. Then the magnetic
material should enclose the opening of the slit and we need two additional coils situated at both
ends of the middle slit which carry the opposite Ampere windings as the polepigces do.

The magnetic quadrupole field focusses in the xz-section, but defocusses in the yz-section. To
obtain stigmatic focussing, the electrostatic cylinder lens needs twice the refractive power as the
quadrupole. When the axis of the quadrupole field lies within the xz-section, this axis coincides
with the lens axis of the whole arrangement. The axis of the quadrupole field can be shifted over
the whole length of the slit into the x-direction simply by transfering some current from the coil
at one end of the slit to the coil at the other end. Thus our lens,acts as a variable axis lens.
In principle the displacement of the axis with respect to the x-direction can be infinite without
changing the imaging properties of the lens.

Like a round lens this lens does not show any aberrations lower than of third order due to its
high symmetry. Furthermore there is no need for a separate stigmator as stigmatic focussing
is achieved by balancing its cylinder lens field against its quadrupole field. Different to round
lenses we have to distinguish between the x- and the y-direction when looking at its aberration
coefficients. For instance the spherical aberration is given by three coefficients Caoca , Cppp and
CaQ3 = Ca<0j where a and /3 are the angles of convergence with respect to the xz- and the
yz-section respectively.
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DISTRIBUTED MONTE CARLO: SMART WAY FOR COMPUTING COMPLEX
PROBLEM

R. Stekly, L. Frank and I. Mullerova
Institute o fScientific Instruments AS CR, Kralovopolska 147, 612 64 Brno, Czech Republic

The aim of this work was to create an engine for the distribution of an computation
task in the TCT/IP network, to verify its operation and to achieve a low-cost great-volume
computation power for simulations of electron scattering using the Monte Carlo method [1-3].

The available PC's have a sufficiently high computation output not only for office
work but also for simpler scientific computations. The computation output of the best PC's is
comparable with that of the cheaper series of the RISC workstation but their purchase cost is
half that or less. Modem offices are being equipped with PC's with the operating system
Win95 connected to the LAN network, which is often connected to the Internet.

At interactive work, the processor is operated noncontinously and there are long
inactive periods. Typical examples are text and graphic editors, table calculators and Internet
browsers. On average, for a sufficiently long period, the processor is never used 100%.
Therefore it has been decided to write a program that will make use of the time-outs for its
own activity, will receive simple tasks via the network, make computation and send back the
results [4], Operating systems with pre-emptive multitasking can effectively work with
priorities of processes and they are mostly equipped with the mechanism that allows the action
of programs during the inactive period of the computer. The chosen platform Win95/NT
implements this mechanism relatively well. The only problem is the back compatibility when
the 16-bit programs (DOS, Win3.11) are being started using the computer emulator with the
given operating system that causes the mechanism to stop because W95/NT are not capable of
determining the state of the application with no implemented mechanism of communication
with the given operating system.

The written computation program has very low demands on the operating memory,
typically 2.7MB compared with the 30MB text editor, is easy to control, provides maximum
information about its state, and works automatically without any intervention of the user.
After starting, the program becomes connected to the computer that distributes the task,
receives the data and starts computation. After finishing the computer work, the user makes
the shutdown of the operating system, the program becomes logout from the computation
process, sends the computed part of the task and becomes ended. The program is used as
resident but the user can end it manually. The task distribution is carried out from one
computer, which is determined in advance. This computer serves for data collection and
recording of the current state of computation.

The operation of the engine was tested in the internal network of the Institute of
Scientific Instruments. The test task was a simple computation of electron scattering in Au
specimen at electron energy of 1 keV. The entire task is divided into subtasks. The maximum
number of trajectories is limited so that all computers end the whole task at the same time.
The computation process was running on the background, the test was made during the
normal working time, the users were asked not to change their working habits.

The following formulas were used for statistically processing the operation:

S trajectories .
= variance

mean value .
| time n

standard deviation 0=VZ>, variation factor
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AN E+B+E BEAM SEPARATOR FOR DETECTING
SECONDARY ELECTRONS IN LOW VOLTAGE SEM

Katsu Tsuno, Nobuo Handa and Sunao Matsumoto
JEOL Ltd., 1-2, Musashino 3-chome, Akishima, Tokyo 196-8558, Japan tsuno(a)jeol.co.jp

1. INTRODUCTION

Among various proposals of the objective lens for high resolution low voltage scanning
electron microscope (LVSEM), an immersion magnetic lens called Snorkel lens [1,2] and a
combined electric and magnetic field lens[3] are now widely used. We classified various
objective lenses for LVSEM and compared their electron optical performances [4—6]. For
designing the optical system of SEM, not only spherical and chromatic aberration coefficients
of the objective lens for the incident beam but also efficiency of collecting secondary
electrons are important. In the strong magnetic field region just above the specimen,
secondary electrons are spiral up into the bore of the objective lens when the Snorkel lens is
used. However, once the electrons come up inside the bore, secondary electrons spread out
and hit the wall of the lens, because there are no magnetic field. It is useful to apply a
magnetic field along the optical axis to bring up those electrons to the top of the objective lens.
A weak electro-static field is effective to pull up the electrons emitted with high angles.

In this investigation, we further show electron
trajectories from the top of the objective lens to the
detector. We use an usual Everhart-Thomley detector,
which is inserted from the side of the optical column.
High voltage 10 kV is applied to the detector. In the in-
lens SEM with accelerating voltage of 20-50 kV, high
voltage applied to the detector captures the secondary
electrons without influencing the primary beam.
However, in LVSEM, the detector must be set far
behind the optical axis of the primary beam. In such the
case, it is necessary to introduce a beam separator to
deflect secondary electrons towards the direction of the
detector. Sato[l] used the Wien filter as the beam
separator. In this investigation, we propose a new beam
separator, which is similar but not the same as the Wien
filter. Recently, Philips announced a new beam
separator with 3 stage electrode system[7].

2. ELECTRON TRAJECTORY
CALCULATION IN THE SEPARATOR.
As shown in Fig. 1, the new beam separator
consists of the first electrodes, the magnet and
the second electrodes. The length of the magnet
is equal to the sum of the length of two
electrodes. The electro-static and magnetic
fields are calculated using EO3D and MO03D
and the electron trajectories are calculated using Fig. 2. Electro-static field distribution on xz
C03D[8]. plane and the primary beam trajectory
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ANTIBUNCHING OF ELECTRONS AS A CONSEQUENCE OF THE
INDISTINGUISHABLENESS OF FERMIONS

Tomas Tyc

Dept, of Theor. Physics and Astrophysics
Kotlarska 2, 611 37 Brno

Czech Republic

The principal indistinguishableness of identical particles has a fundamen-
tal significance in quantum mechanics. One of its most important conse-
quences for fermions is the Pauli principle. Another consequence of the
quantum indistinguishableness is the difference of the statistics of arrival
times of coherent particles emitted from a thermal source to a detector, with
respect to the statistics of classical particles. This phenomenon is called
bunching in the case of bosons due to the fact that bosons come more likely
in groups of two, three etc. (“bunches”) than alone. In the case of fermions
we deal with antibunching because the fermions avoid each other, i.e., do not
come to a detector even in pairs.

Bunching of bosons was predicted theoretically [1] and proved experi-
mentally [2] with photons already over 40 years ago. The theory describing
this phenomenon is richly developed (e.g. [3]). On the contrary, the theory
of antibunching (e.g. [4, 5]) is quite incomplete and there are still many
problems to be solved. Moreover, the antibunching of fermions has not been
experimentally proved until now.

In the talk will be given a brief introduction to the theory oPimtibunching
for electrons and its application to an interesting case of an electrostatic
biprism interferometer.

[1] E. Purcell, Nature 178 (1956), 1449

[2] R. Hanbury Brown, R. Q. Twiss, Proc. Roy. Sac. London 242 (1957),
300

[3] L. Mandel, E. Wolf: Optical Coherence and Quantum Optics, Cambridge
University Press, 1995

[4 M. P. Silverman, 11 Nuovo Cimenlo 97B (1987), 200

[6] S. Saito, J. Endo, T. Kodama, A. Tonomura, A. Fukuhara, K. Ohbayashi,
Phys. Lett. A 162 (1992), 442 - 448
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IMAGING OF NON-CONDUCTING SPECIMENS BY NONCHARGING SCANNING
ELECTRON MICROSCOPY WITH METHOD FOR AUTOMATICALLY ADJUSTED CRITICAL
ENERGIES

M. ZadraZil, L. Frank, J. Norris
Institute ofScientific InstrumentsAS CR, Kralovopolska 147, 612 64 Brno, Czech Republic

The total emitted electron current in the SEM is normally lower than the primary beam current so
that some negative charge is dissipated into the specimen. In the case of a non-conductive specimen, the
charge stays localised at the surface. It creates a unipolar electric field which deflects the primary beam
and influences the trajectories of the signal electrons before their detection, and can also cause discharges,
etc. Thus, non-conductors cannot be observed at normal energies. Between the critical primary energies
at, say, 0.5 to 4 keV, the total electron yield exceeds the unity level and the positive surface charge attracts
back a part of slow secondaries so that a balance is established with a potential of a few volts only.

The non-charging microscopy method [2,3] consequentially utilises the critical energies to avoid
any charge dissipation. The difficult task to determine a critical energy at absolute minimum surface
charge-up (see [4]), is solved by quick acquisition of the signal development in time after a pixel is
illuminated for the first time. The method was realised in a cathode lens equipped SEM which enables one
to adjust easily the electron landing energy and even to roughly align the SEM at a different energy. The
drawback is that the cathode lens extracts the secondaries off the surface so that also the positive charging-
up fully develops. The final step in the method development consisted in closing an automated loop
formed by the following steps:

I: measurement ofthe signal vs. time curve in series of pixels not illuminated before;

2 smoothing of the curves by using the polynomial rms fitting method;

3. curve integration with respect to its asymptotic level;

4:  stepwise discarding ofthe curves most differing from the average;

5:  determination of the average integral as the total charge measure;

6: determination of the next suitable value of the cathode lens excitation, i.e. the electron landing energy;

7. adjustment of the specimen bias by the electronically controlled HV supply and approximate automatic
prefocusing based on tabulated data (this step is not ready yet, such that partly manual control is necessary).

The loop is preceded by definitions of pixels prescribed for the critical energy measurements and
determination of the working distance, it is closed when a total charge rtieasure falls below a pre-selected
limit, and finally, a single-shoot picture at the critical energy is taken from the unused part of the view

field.

The method was tested on two different ceramics materials. For both of them, signal vs. time
curves were taken, and the curve integral was calculated. The sample () embodies only one critical
energy (see Fig.1), which means that the sample is compact of materials with close values of critical
energies. There was no problem in observing this sample with the SEM’s landing energy set to the
calculated value (1.6keV). On the contrary, we found two mutually distant critical energies on the sample
(b) (Fig. 1). Under the latter circumstances, the method presented here cannot produce truly noncharged
micrographs; a specimen of this kind of heterogeneity consists of domains, parts of which charge-up at
any electron energy selected.
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